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ABSTRACT
We extend the MC-DCOP model to problems where each agent
controls multiple variables, map a service-oriented computing do-
main to this MV-MC-DCOP model, and use the solutions as a pre-
processing step to an existing inexact MDP solver.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Multiagent Systems

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
In service-oriented computing environments, choreographing ser-

vices with stochastic behaviors (durations and results) can amount
to formulating joint policies, a generally intractable problem [1]. In
response, suboptimal local search techniques have been developed,
such as a greedy approach [5]. Unfortunately, in overconstrained
situations (where service requests must be denied), the greedy ap-
proach’s myopic view can aggravate its suboptimality, as some re-
quests are greedily scheduled that ultimately add no value because
other complementary requests are denied.

Our work investigates how distributed constraint optimization
(DCOP) techniques can help avoid such situations by first identify-
ing (approximately) optimal combinations of service requests that
can be feasibly scheduled together. The idea is to abstract away de-
tails about services’ interactions and stochastic behaviors in order
to formulate and solve the problem as a DCOP, and then use the
DCOP solution(s) to guide the joint policy search, allowing faster
convergence to better (but still potentially suboptimal) solutions.

We consider the MC-DCOP algorithm [2] as a logical starting
point for our preprocessing model, due to its simplicity and separa-
tion of constraints into a maximizing function and a limiting func-
tion. However, MC-DCOP assumes that each agent controls only
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Figure 1: Partial View of a Service Coordination Problem

a single variable, whereas in our problem service agents can be
responsible for granting or denying multiple requests. We thus in-
troduce a more general variant of MC-DCOP, which we call Multi-
Variable MC-DCOP (MV-MC-DCOP), that removes the single vari-
able assumption and requires agents to assign values to their local
variables that satisfy constraints and maximize reward.

2. SERVICE COORDINATION DOMAIN
Our motivating domain of service coordination has two types of

agents: service providers and requesters. Each agent has internal
tasks, which may depend on the prior completion of other tasks,
internal or external to the agent. An agent is considered satisfied
when any of a group of subsets of its internal tasks are completed,
and unsatisfied agents receive no rewards. The task durations can
be uncertain, and several task reward structures may exist.

Figure 1 shows a portion of a graph representing a larger prob-
lem, with two requesters and one provider visible. Details are
shown for the durations and rewards of variable (request) 1 in agent
P4, and satisficing requirements for requester R3. There are 3 re-
quests visible, creating 2 task chains: P4’s task V-1 provides for
R1’s task V-1, and P4’s task V-3 provides for P4’s task V-2, which
in turn provides for R3’s V-1.

Casting this type of service coordination problem into a DCOP
requires abstracting away detailed information about things like un-
certainties and task relationships. The DCOP model of each task
has a deterministic duration and outcome, chosen to trade off risk
of missing a high-utility combination with risk of proposing an in-
feasible combination. For Figure 1, a pessimistic choice assigns
P4’s V-1 a duration of 5 and utility of 10.

Details about task relationships, such as in Figure 1 where the
condition for R(equester) 3 to be satisfied involves a Boolean ex-
pression over which requests are satisfied, are also reduced to where
an agent simply has a minimum number of variables that must be
satisfied for the agent to receive a reward. In Figure 1, setting R3’s
minSatisfied to 2 (more than) ensures that R3 is satisfied when-
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Figure 2: MV-MC-DCOP seeded & unseeded Greedy MDP
with 2.3̄ requests per agent

ever this constraint is met. Further, for our initial implementation
described here, we also ignore ordering between tasks within an
agent, and prohibit an agent from acting as both a provider and re-
quester. Hence, in Figure 1, tasks V-2 and V-3 are merged, with the
new super-task summing the individual utilities and concatenating
the durations.

With these transformations, the resulting DCOP essentially re-
quires that agents assign subsets of their local variables to TRUE,
satisfying the various constraints (e.g., that the total durations of
the tasks an agent agrees to do cannot exceed the available time)
and maximizing the total reward across the agents.

3. MV-MC-DCOP ALGORITHMS

3.1 Mixed Integer Linear Program
We have formulated a Mixed Integer Linear Program(MILP)

which performs a simplex search of a graph in the MV-MC-DCOP
framework [4]. This returns a globally optimal solution, if one ex-
ists, but requires all data and computation to be centralized.

3.2 MV-MC-MGM Local Search
We have extended the existing MC-MGM [2] algorithm to find

local optimal solutions to MV-MC-DCOPs more quickly than the
complete MILP. We call this new algorithm MV-MC-MGM [4],
which is a hill-climbing-based local search algorithm that uses a de-
composition approach for dealing with multiple variables per agent
(see [3] for trade-offs in approaches). In MV-MC-MGM, each vari-
able calculates its best move (variable reassignment) given the val-
ues of neighboring variables and its budget allocated by the agent
it is subordinate to, and broadcasts the gain of this move. If no di-
rectly connected neighbor has a higher gain, then the agent moves.

4. EVALUATION AND DISCUSSION
We implemented these MV-MC-DCOP algorithms, and tested

whether they indeed can be a fruitful preprocessing step to improve
the performance of the greedy MDP solver [5]. We generated ran-
dom problems with 16 requests (and therefore 32 externally con-
nected variables), half of which had high reward and low duration,
and the other half the opposite. These were distributed among 6
agents. First each agent was assigned to be either a requester or
provider, and then the pairs of tasks in a binary request were ran-
domly assigned. Figure 2 compares the performance of the MV-
MC-MILP and MV-MC-MGM approaches, for each trying both
optimistic and pessimistic strategies for determinizing task dura-
tions (hence utilities). We can observe that MV-MC-MILP helps
the greedy MDP solver find higher-reward policies faster, but it-

Figure 3: MV-MC-DCOP seeded & unseeded Greedy MDP
with 3.2 requests per agent

self has higher runtime, while MV-MC-MGM has a lower runtime,
but is somewhat less helpful to the greedy MDP solver. The short
dark (blue) bands at the bottom of the bars in Figure 2 represent the
MV-MC-DCOP’s runtime. Both types of preprocessing, however,
cause improvements compared to the greedy MDP solver working
alone. Figure 3 presents similar data for the case where the number
of agents is reduced to 5 while the number of requests and other
parameters are held constant (although reward is scaled by 10 for
visibility). This results in an increase from 2.3̄ requests per agent to
3.2. Now, because even more requests must be selectively declined,
the advantages of DCOP preprocessing to decreasing runtime are
accentuated, and the dark (blue) band is not even visible.

The MV-MC-MGM algorithm thus shows promise in reducing
runtime and increasing reward while keeping computation
distributed, as is the case with greedy MDP, and appears to scale
linearly as internal complexity and number of agents increase. How-
ever, the centralized MILP approach results in lower average MDP-
inclusive runtime, and higher reward as well. Our future work
includes evaluating these techniques on a wider space of prob-
lems, and extending the MV-MC-DCOP formulation (and our al-
gorithms) to model richer task interactions involving precedence
ordering and task chains.
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